ADAPTIVE CONTOUR ESTIMATION WITH GENETIC ALGORITHMS
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ABSTRACT

We introduce a fully adaptive active contour which is based
on elliptic Fourier contour description and on the minimum
description length (MDL) principle. The proposed
technique estimates the order of the contour description
(number of Fourier coefficients), and the contour itself. The
search is performed by means of a genetic algorithm (GA).

Preliminary results are presented for simple synthetic
images with a specified pixel distribution, which testify the
performance of the proposed scheme. These results are the
first step towards a fully unsupervised contour estimation.

1. INTRODUCTION AND PREVIOUS WORK

Contour estimation is one of the most important,
interesting, and challenging problems in image processing
and computer vision. Originating from the seminal work of
Kass, Witkin, and Terzopoulos [15], snake-type approaches
(in which we may include deformable contours, active
contours, dynamic contours, and deformable templates)
constitute one of the most successful approaches.

In the original version [15], snakes work by minimizing

an energy function composed of an (internal) elastic-type

term which increases with the contour deformations, and an
(external) attraction potential linking the contour with the
image. The goal is a compromise between contour
smoothness and adequacy to the observed data. In recent
years, several improvements, - modifications, and
reformulations have overcome limitations of the traditional
mode! such as sensitivity fo initialization, myopia (i.e.,
insensitivity to distant features), and inability to
reparametrize itself during the deformation process (see [4],
{53, [31, [17], [18], [20], [23], and references therein).

Deformable templates, though related to snake-type
approaches, use shape descriptions with small numbers of
parameters; the deformation energy term is usually
unnecessary (see [6], [13], [24] and references therein).
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From a Bayesian estimation angle, deformable models are

interpretable as maximum a posteriori (MAP) estimators;

the internal energy and the external potential terms are

associated with the a priori probability function and the

iikelihood function, respectively; for details, see [9], [13],

[24], [25]. The Bayesian estimation perspective has the

advantage of giving meaning to all the involved entities;
e.g., the form of the energy term that links the contour with

the image contents, i.e. the likelihood function (in Bayesian .
terms) can be derived from knowledge about the

observation model rather than simply from common sense

arguments [7], [9]. The main difficulties in this approach

are the choice of the parameters involved in the definition

of the a priori probability function and solving the very

difficult optimization problem involved.

In this paper, we introduce a new adaptive contour
estimation technique based on Fourier contour description
and on the minimum description length (MDL) principle
[21], [22]. In the proposed criterion, the contour shapes are
described by as few parameters as possible. Basically, it is a
template matching approach with adaptive parametrization.
To solve it we use a genetic search strategy[10]{11] (see
[11[2][3] for genetic optimization on segmentation and edge
detection). Some specific genetic operators were
implemented in order to improve the algorithm
convergence.

2. PROPOSED TECHNIQUE

Fourier Representation

Let a closed curve (ie., a closed contour) on the image
plane be represented by a periodic vector function v(t) =
[x(t) y(t)]T, of period 2m, i.e., of unit fundamental angular
frequency. The complex Fourier series description of the
closed curve is defined as
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are the complex Fourier coefficients [14], [24]. The discrete
version of this representation is obtained by considering a
discretization of a period of the curve v(t) into N points {v;,

i = 0,1,..,N-1}. The discrete complex Fourier series

representation is
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By truncating series (3) to K terms (with K < N), a
smoothed version of the curve is obtained. We denote the
vector of 2K complex coefficients by

Ox) =[eo’fo,enfx’--"ex-x’fx—l] &)

The true unobserved contour is assumed to be smooth, i.e.,
it can be exactly described by some 9( K-

The Likelihood Function

Given an N-point contour defined by a K-order discrete
complex Fourier series, the observed image I is modeled

by the likelihood function p(J 16,x,,9) » Where q) is the

vector of parameters of the observation mechanism.
Although this is an often overlooked aspect, great care has
to be put on the derivation of the likelihood function. For
specific applications (e.g., finding organ boundaries in
medical images), all the available knowledge about the
image acquisition process should be included [7], [9]. Not
doing so may result in disastrous results, specially on very
low quality images (see [7]). This approach naturally leads
to region based strategies which, unlike gradient based
ones, are robust in the presence of noisy or low contrast
images [71, [9], [12], [23].

We now make the following assumptions:

Conditional independence: given the true (unobserved)
contour, the image pixels are independently
distributed. ~

Inside and outside regions homogeneity: The conditional
probability function of each pixel depends only on
whether it belongs to the inside or outside region of

~ the contour; i.e., all the pixels inside (resp. outside)
have a common distribution characterized by a

parameter vector ¢, (resp. by ¢w), with

¢ = [¢m ’¢out] *

Accordingly,

P(IIH(K)) =

( Hpin(l(i,j)))[ Hpout(l(i,j))]
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where 7(6 ,) and 0(6y,)are the inside and outside

regions of the contour defined by 6, respectively;

k)*
likewise, p, (I\6,)and p, (116,,,) are the pixel-wise
conditional probabilities, of the inner and outer regions,
respectively. :

The Estimation Criterion
If K was known, maximum likelihood (ML) estimates could
in principle be obtained by maximizing with respect to 6( X"

However, since K is unknown, there is-a model order -
problem which can be stated as :

e for each K, there is a parameter space of dimension K;
the spaces are nested, that is, for each 9( © € @( X

there is some 6§

. o
tksp) € ®(K+1) such that

p(16x)) = p(I'G.,)) ©

e consequently, K can not be estimated directly by
" maximizing the likelihood function since p(l lé; K)) ,

where 6( o

non-decreasing function of K [20]. ~

is the ML estimate .of 8

) %) given K, is a

To overcome this difficulty, we adopt Rissanen's MDL
principle (see [21] or [22] for details) where

A

6, =arg min{~log p(116,)) +2Klog N} ()

with eA(K) standing for the joint estimates of K and 6, -

The 2K logN term results from the fact that a K-order
parametrization involves 2K complex coefficients, i.e. 4K
real ones, and the MDL principle penalizes -each real
coefficient with a (log N)/2 cost [22].

1 —
In our case, 9(1() _[e()’f()’el’fl ’,""eK—l’fK—l] and

4 .
Bk = [eO’fO’el Y PSRN A ,0’0] describe the
same contour, '
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From a Bayesian point of view, (7) can be interpreted as a
MAP estimator,

-

Ok, = arg max{p(e(,o II)}

= arg max{log p(116,,) +log p(6, K,)}

with the prior p(G( 6) exp{—ZK log N}. Since K is

the number of terms in the Fourier description of the
contour, this is basically a smoothing prior (as in reg-
ularization) expressed in the Fourier domain; this has the
advantage of avoiding the shrinkage associated with
smoothing priors directly expressed on the contour co-
ordinates [24].

The Genetic Algorithm

Introduction

To deal with the difficult task of solving (7) we used a
genetic search strategy [10][11]. Behind the genetic
algorithms is the idea of maintaining a population of
solutions to a global optimization problem. Each different
solution has an associated cost function value, which is
used to measure its degree of fitness. The evolutionary
process occurs over generations, in which the population
undergoes 3 distinct stages. During Reproduction, the
solutions are subjected to a stochastic selection procedure.
The probability of survival, i.e., passing to the next
generation, is computed according to the fitness measure.
This mechanism assures a level of evolutionary pressure,
thus providing a way for the population to evolve.
Crossover combines. pairs of solutions, creating new
elements with features existing in the population. Mutation
aims at introducing new information into the population,
by randomly altering the contents of a solution.

Specific Genetic Operators

Genetic Algorithms are a tool for a large class of
optimization problems because they do not require any
problem information apart from a fitness - evaluating
function. Anyhow, additional information on the problem
characteristics can be valuable on the convergence speed
of the algorithm.

A new set of mutation operators were added, intended for a
fine adjustment of the contour. These are:

e Translation: A Gaussian random variable (GRV)
with zero mean is added to the first Fourier
coefficient, translating the contour.

e  Resizing: The contour is resized by multiplying the
coefficients of K > 1 with a GRV with unitary mean.

e  Rotation: The contour is rotated around its center by
an angle given by GRV with zero mean.

During the selection procedure, the survival probability of
each solution is scaled according to the formula [16]:

where ¢ the description length cost of the individual,
Cpmip @nd C are the minimal and average description 2ength
cost of the population in each iteration. The paral r ¢ is
used to adjust the selective pressure of the genetic
algorithm.

This is a dynamic fitness scaling which has the
advantageous properties of being scale and translation
invariant.

3. IMPLEMENTATION AND PRELIMINARY
RESULTS

The performance of the proposed technique was tested
using synthetic images with and without added noise. The
image regions have known mean and variance following a
Normal distribution. This  information is used by the
algorithm.

The MDL. criterion can therefore, in this case, be expressed
as:

(OY)}
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This expression can be simplified to

1 1
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) 2
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where N, and N,,, are the number of pixel in the inner and

outer regions.

Figures 1 and 2 show the results after 21600 and 6000

solutions processed, respectively. The first image is a

superposition of two ellipses (with perpendicular major

axis) which was approximated by a rhombus. Both

contours are based on 2™ order descriptors. -
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contour

The evolution of the MDL cost function for the best
element in each generation (of the figure 2 run) is charted
on figure 3.
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Fig 3: Evolution of the MDL cost

The algorithm was also tested on images having two
regions with equal average pixel intensities and different
variances. Since the implemented criterion uses Gaussian
distributions with specified mean ‘and- variance, it is able to
identify the boundaries of regions with different variances.
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The image on figure 4 was used, resulting in a contour
which [comes close to the correct one. This type of images
cannof be dealt with by traditional snake-like contour
descriptors. These methods perform a local gradient-based
adjustiment in the region border, thus requiring different
intensjties for the inside and the outside regions

(71081{91(23].

Fig 4: Test image with equal average intensity regions

The contours presented here are some of the results of the
preliminary tests for the proposed scheme. The algorithm
is able to quickly find the main region, but finer
adjustments of the contour are much more time consuming.
Since the description length cost function relies entirely on
the distributions of the pixe] intensities and on the model
order (and not, for instances, on the contour smoothness),
it is not an efficient guide for the algorithm during the final
adjustments. Nonetheless it is worth noting that the MDL
approach is to select a model minimizing codelength for
encqding both the model and data. This model may not be
(and usually is not) the one providing the best fitting
contour.

Another main difficulty of the algorithm, lies on the fact
that| the search space can have many local minima.
Although genetic algorithms:can be made more: suitable
than other classes of algorithms. when considering: local
minjma, their performance is conditioned to suitable
representations. A good representation is often the key to a
well behaved search space:

In the problem addressed in this paper, it is.clear that,
sometimes, ‘small - contour - adjustment, .require large
simultaneous changes in the Fourier descriptor space. On
the|other hand, small changes in the Fourier coefficients
may lead to poor solutions.




4. FUTURE WORK

Current undergoing work includes modifications to the
algorithm, such as performing mutation directly on the
contour, as opposed to just on the Fourier descriptor. After
mutating a K-order contour, a new descriptor can be
computed. By setting the higher order coefficients to zero,
a smoothed version of the contour is obtained. This
procedure can be seen as a complex mutation on the
Fourier descriptor space, which is not very disruptive in
the image space.
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